I-TASSER-MR: automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation
نویسندگان
چکیده
Molecular replacement (MR) is one of the most common techniques used for solving the phase problem in X-ray crystal diffraction. The success rate of MR however drops quickly when the sequence identity between query and templates is reduced, while the I-TASSER-MR server is designed to solve the phase problem for proteins that lack close homologous templates. Starting from a sequence, it first generates full-length models using I-TASSER by iterative structural fragment reassembly. A progressive sequence truncation procedure is then used for editing the models based on local variations of the structural assembly simulations. Next, the edited models are submitted to MR-REX to search for optimal placements in the crystal unit-cells through replica-exchange Monte Carlo simulations, with the phasing results used by CNS for final atomic model refinement and selection. The I-TASSER-MR algorithm was tested in large-scale benchmark datasets and solved 36% more targets compared to using the best threading templates. The server takes primary sequence and raw crystal diffraction data as input, with output containing annotated phase information and refined structure models. It also allows users to choose between different methods for setting B-factors and the number of models used for phasing. The online server is freely available at http://zhanglab.ccmb.med.umich.edu/I-TASSER-MR.
منابع مشابه
Using iterative fragment assembly and progressive sequence truncation to facilitate phasing and crystal structure determination of distantly related proteins.
Molecular replacement (MR) often requires templates with high homology to solve the phase problem in X-ray crystallography. I-TASSER-MR has been developed to test whether the success rate for structure determination of distant-homology proteins could be improved by a combination of iterative fragmental structure-assembly simulations with progressive sequence truncation designed to trim regions ...
متن کاملAutomated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement.
I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and fragment-guided molecular dynamics (FG-MD), were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for ...
متن کاملProtein Structure and Function Prediction Using I-TASSER.
I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of t...
متن کاملI-TASSER server: new development for protein structure and function predictions
The I-TASSER server (http://zhanglab.ccmb.med.umich.edu/I-TASSER) is an online resource for automated protein structure prediction and structure-based function annotation. In I-TASSER, structural templates are first recognized from the PDB using multiple threading alignment approaches. Full-length structure models are then constructed by iterative fragment assembly simulations. The functional i...
متن کاملInterplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored ...
متن کامل